NF1 transcriptional factor(s) is required for basal promoter activation of the human intestinal NaPi-IIb cotransporter gene.
نویسندگان
چکیده
The human intestinal type IIb Na+-P(i) cotransporter (hNaPi-IIb) gene promoter lacks a TATA box and has a high GC content in the 5'-flanking region. To understand the mechanism of hNaPi-IIb gene transcription, the current study was performed to characterize the minimal promoter region and transcriptional factor(s) necessary to activate gene expression in human intestinal cells (Caco-2). With the use of progressively shorter promoter constructs, a minimal promoter extending from bp -58 to +15 was identified and shown to direct high levels of hNaPi-IIb cotransporter expression in Caco-2 cells. Gel mobility shift assays (GMSAs) indicated that two regions could be bound by nuclear proteins from Caco-2 cells: region A at bp -26/-23 and region B at bp -44/-35. The introduction of mutations in region A abolished promoter activity, whereas mutations in region B had no effect. Deletion mutants of the same regions showed identical results. Furthermore, DNase I footprinting experiments confirmed the observation made by GMSAs. Additional studies, which used a specific nuclear factor 1 (NF1) antiserum, demonstrated that NF1 protein(s) binds to the minimal promoter at region A. These results indicated that the NF1 protein(s) is required to activate the basal transcription of hNaPi-IIb gene under normal growth conditions. This study has thus identified a new target gene in the small intestinal epithelium that is directly regulated by NF1 transcriptional factor(s).
منابع مشابه
Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen.
The current experiments were designed to study the effect of beta-estradiol on type IIb sodium-coupled phosphate (NaPi-IIb) cotransporter gene expression. Uptake studies with intestinal brush-border membrane vesicles (BBMV) showed that estrogen treatment increased sodium-dependent phosphate absorption by approximately 45% in rat intestine. Northern blot analysis indicated that NaPi-IIb mRNA exp...
متن کاملTranscriptional regulation of the human NaPi-IIb cotransporter by EGF in Caco-2 cells involves c-myb.
The type IIb sodium-phosphate (NaP(i)-IIb) cotransporter mediates intestinal phosphate absorption. Previous work in our laboratory has shown that EGF inhibited NaP(i)-IIb cotransporter expression through transcriptional regulation. To understand this regulation, progressively shorter human NaP(i)-IIb promoter constructs were used to define the EGF response region, and gel mobility shift assays ...
متن کاملAge-Dependent Regulation of Rat Intestinal Sodium-Phosphate Cotransporter (NaPi-IIb) by 1,25-(OH)2 Vitamin D3
The current studies were designed to characterize type IIb sodium-phosphate cotransporter (NaPi-IIb) expression and to assess the effect of 1,25-(OH)2 vitamin D3 (vit-D3) on NaPi-IIb gene expression during rat ontogeny. Sodium-dependent Pi absorption by intestinal brush-border membrane vesicles (BBMV) decreases with age, and NaPi-IIb gene expression also decreases proportionally with age. Vit-D...
متن کاملTumor necrosis factor-alpha impairs intestinal phosphate absorption in colitis.
Phosphate homeostasis is critical for many physiological functions. Up to 85% of phosphate is stored in bone and teeth. The remaining 15% is distributed in cells. Phosphate absorption across the brush-border membrane (BBM) of enterocytes occurs mainly via a sodium-dependent pathway, which is mediated by type IIb sodium-phosphate cotransporters (NaPi-IIb). Patients of inflammatory bowel diseases...
متن کاملRegulation of the human sodium-phosphate cotransporter NaP(i)-IIb gene promoter by epidermal growth factor.
The intestinal sodium-phosphate cotransporter (NaP(i)-IIb) plays a major role in intestinal P(i) absorption. Epidermal growth factor (EGF) is involved in the regulation of P(i) homeostasis. However, the role of EGF in intestinal NaP(i)-IIb regulation is not clear. The current studies showed that EGF decreased NaP(i)-IIb mRNA abundance by 40-50% in both rat intestine and Caco-2 cells. To underst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 288 2 شماره
صفحات -
تاریخ انتشار 2005